Hairy/Enhancer-of-Split MEGANE and Proneural MASH1 Factors Cooperate Synergistically in Midbrain GABAergic Neurogenesis
نویسندگان
چکیده
GABAergic neurons are the primary inhibitory cell type in the mature brain and their dysfunction is associated with important neurological conditions like schizophrenia and anxiety. We aimed to discover the underlying mechanisms for dorsal/ventral midbrain GABAergic neurogenesis. Previous work by us and others has provided crucial insights into the key function of Mgn and Mash1 genes in determining GABAergic neurotransmitter fate. Induction of dorsal midbrain GABAergic neurons does not take place at any time during development in either of the single mutant mice. However, GABAergic neurons in the ventral midbrain remained unchanged. Thus, the similarities in MB-GABAergic phenotype observed in the Mgn and Mash1 single mutants suggest the existence of other factors that take over the function of MGN and MASH1 in the ventral midbrain or the existence of different molecular mechanisms. We show that this process essentially depends on heterodimers and homodimers formed by MGN and MASH1 and deciphered the in vivo relevance of the interaction by phenotypic analysis of Mgn/Mash1 double knockout and compound mice. Furthermore, the combination of gain- and loss-of-function experiments in the developing midbrain showed co-operative roles for Mgn and Mash1 genes in determining GABAergic identity. Transcription factors belonging to the Enhancer-of-split-related and proneural families have long been believed to counterpart each other's function. This work uncovers a synergistic cooperation between these two families, and provides a novel paradigm for how these two families cooperate for the acquisition of MB-GABAergic neuronal identity. Understanding their molecular mechanisms is essential for cell therapy strategies to amend GABAergic deficits.
منابع مشابه
Megane/Heslike is required for normal GABAergic differentiation in the mouse superior colliculus.
The mouse Mgn protein (Helt) is structurally related to the neurogenic Drosophila hairy and Enhancer of split [h/E(spl)] proteins, but its unique structural properties distinguish it from other members of the family. Mgn expression shows a spatiotemporal correlation with GABAergic markers in several brain regions. We report here that homozygous Mgn-null mice die between the second and the fifth...
متن کاملProneural bHLH and Brn proteins coregulate a neurogenic program through cooperative binding to a conserved DNA motif.
Proneural proteins play a central role in vertebrate neurogenesis, but little is known of the genes that they regulate and of the factors that interact with proneural proteins to activate a neurogenic program. Here, we demonstrate that the proneural protein Mash1 and the POU proteins Brn1 and Brn2 interact on the promoter of the Notch ligand Delta1 and synergistically activate Delta1 transcript...
متن کاملMash1-dependent Notch Signaling Pathway Regulates GABAergic Neuron-Like Differentiation from Bone Marrow-Derived Mesenchymal Stem Cells
GABAergic neuronal cell grafting has promise for treating a multitude of neurological disorders including epilepsy, age-related memory dysfunction, Alzheimer's disease and schizophrenia. However, identification of an unlimited source of GABAergic cells is critical for advancing such therapies. Our previous study implied that reprogramming of bone marrow-derived mesenchymal stem cells (BMSCs) th...
متن کاملPatterning of proneuronal and inter-proneuronal domains by hairy- and enhancer of split-related genes in zebrafish neuroectoderm.
In teleosts and amphibians, the proneuronal domains, which give rise to primary-motor, primary-inter and Rohon-Beard (RB) neurons, are established at the beginning of neurogenesis as three longitudinal stripes along the anteroposterior axis in the dorsal ectoderm. The proneuronal domains are prefigured by the expression of basic helix-loop-helix (bHLH) proneural genes, and separated by domains ...
متن کاملIdentification of a novel basic helix-loop-helix gene, Heslike, and its role in GABAergic neurogenesis.
Neuronal subtype specification depends on multiple transcription factors such as basic helix-loop-helix (bHLH) factors. However, transcription factor codes for most neurons remain to be determined. Here, we report identification of a novel mouse bHLH factor, termed Heslike, that has Hes1-like bHLH domain and transcriptional repressor activity. Heslike is coexpressed with the bHLH factor Mash1 i...
متن کامل